Second Semester B.E. Degree Examination, December 2010 **Engineering Mathematics - II**

Time: 3 hrs.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

2. Answer all objective type questions only in OMR sheet page 5 of the Answer Booklet.

3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

Select the correct answer in each of the following: 1

The radius of curvature of a curve $y = c \cosh(x/c)$ is

A)
$$\frac{c^2}{2}$$
 B) $\frac{y^2}{c}$

B)
$$\frac{y^2}{c}$$

C)
$$\frac{3c}{8\sqrt{2}}$$

Order as I**nstitute of** Institute of

D) c

The value of C of the Rolle's theorem for $f(x) = \frac{\sin 2x}{e^{2x}}$ in $[0, \pi/2]$ is ii)

B)
$$\pi/8$$

Maclaurins series expansion of e^{Sinx} is

A)
$$1+x+\frac{x^2}{2}-\frac{x^4}{8}+...$$

B)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

C)
$$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

D)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

The value of C of the Lagrange's mean value theorem for $f(x) = \log x$ in [1, e] is

B) 2.5

C) 1.7

D) 3.2 (04 Marks)

Find the radius of curvature for the curve, $x^3 + y^3 = 3axy$ at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on it.

(04 Marks)

State and prove Lagrange's mean value theorem.

(06 Marks)

Expand log (secx) up to the term x⁴ using Maclaurin's series.

(06 Marks)

Select the correct answer in each of the following:

i) Lt
$$\frac{\log(\text{Sinx})}{x \to \pi/2}$$
 equals

A)
$$\frac{1}{2}$$

C) $\pi/2$

D) - 1/2

For finding extreme values of f(x, y), ii)

A)
$$\frac{\partial f}{\partial x} = 0$$
, $\frac{\partial f}{\partial y} = 0$

B)
$$\frac{\partial^2 f}{\partial y \partial x} = 0$$

$$C) \qquad \frac{\partial^2 f}{\partial y^2} = 0$$

D) None of these

The rectangular box of maximum volume and a given surface area is

a triangle

B) a rectangle

C) a cube

D) None of these

For finding the stationary value of u (x, y, z) subject to the condition $\phi(x, y, z) = c$, the

A)
$$F = u(x, y, z) + \lambda \phi(x, y, z) = c$$

B)
$$F(x, y) = 0$$

C)
$$\frac{\partial f}{\partial x} = 0$$

D) None of these

(04 Marks)

(04 Marks)

- b. Evaluate $\begin{array}{c} Lt \\ x \rightarrow 0 \end{array}$ tanx logx. (04 Marks)
- c. Expand Sin (xy) about $(1, \pi/2)$ up to second degree terms. (06 Marks)
- d. Find the extreme values of the function, $f(x, y) = x^3 + 3xy^2 3x^2 3y^2 + 4$. (06 Marks)
- 3 Select the correct answer in each of the following:
 - i) $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^{2} + y^{2}) dy dx =$ A) 2/5 B) 3/35
 ii) $\int_{-c-b-a}^{c} \int_{-b-a}^{b} (x^{2} + y^{2} + z^{2}) dz dy dx =$ C) 3/2 D) 5/2
 - - A) $8abc(a^2 + b^2 + c^2)/3$ B) $\frac{8abc}{3}$ D) $\frac{a^2bc^2}{2}$ C) $9ab^2c$
 - iii) The value of β (m, n) is
 - $A) \quad \int\limits_0^{\cdot} x^{m-1} (1-x)^{n-1} dx$ B) $\int_{0}^{\infty} e^{-x} x^{n-1} dx$
 - C) $\int_{0}^{\infty} e^{x^2+y^2} dx$ D) None of these
 - iv) The value of (1/2) is
 - C) $\pi^2/2$ D) $\pi/\sqrt{2}$ (04 Marks) Evaluate $\iint xy(x+y) dy dx$ taken over the area between $y = x^2$ and y = x.
 - Evaluate $\int_{a}^{a} \int_{x}^{x+y} \int_{z}^{x+y+z} dz dy dx$. (06 Marks)
 - Prove that β (m, n) = β (n, m). (06 Marks)
- 4 Select the correct answer in each of the following:
 - F is said to be irrotational, if B) $\vec{F}d\vec{r} = 0$ C) $\vec{F}.\vec{r} = 0$ D) None of these A) $\oint \vec{F} \cdot d\vec{r} = 0$
 - If F is the force acting upon a particle in displacing it along the curve c to the other end, then the total work done by \vec{F} is.
 - $\int \vec{F} \times d\vec{r}$ C) ∫dr̄ D) None of these
 - Green's theorem in the plane is a special case of A) Gauss theorem
 - B) Euler's theorem C) Stokes theorem D) Baye's theorem
 - The cylindrical polar co-ordinates are (ρ, ϕ, z) given by
 - $x = \rho \cos \phi$, $y = \rho \sin \phi$, z = zB) x, y, z $x = Sin\theta$, $y = Cos\theta$ D) None of these (04 Marks)

b. If $\vec{F} = (3x^2 + 6y) i - 14 yzj + 20 xz^2k$, evaluate $(\vec{F}.d\vec{r})$ from (0, 0, 0) to (1, 1, 1) along the curve given by x = t, $y = t^2 z = t^3$.

c. Verify Stokes theorem for $\vec{F} = (2x - y) i - yz^2 j - y^2 zk$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$, C is its boundary. (06 Marks)

d. If $\phi = xyz$, find $\nabla^2 \phi$ in the cylindrical system.

(06 Marks)

PART - B

a. Select the correct answer in each of the following:

P.I. of the differential equation $(D^2 + 4D + 4) y = e^{-2x}$ is

B) $\frac{x^2e^{-2x}}{2}$ C) x^3 D) $\frac{xe^{2x}}{3}$

The solution of the differential equation $(D^2 + 2D + 1) y = 0$ is

A) $c_1 e^x + c_2 e^{-x}$ B) $(c_1 + c_2 x)e^{-x}$

C) c_1e^x

C) c_1e^x D) $c_1 + c_2 e^{-2x}$ The roots of the A. E. with differential equation $(D^3 - D^2 + 4D - 4) y = 0$ are

B) 1, 2, 1

C) 1, 3, 2 D) 2, 2, 2

The particular solution of the differential equation $f(D)y = e^{ax}$ is

B) $e^{ax}/f(D+a)$

C) $\frac{e^{ax}}{f(-a)^2}$

D) None of these

(04 Marks)

b. Solve $6 \frac{d^2y}{dx^2} + 17 \frac{dy}{dx} + 12y = e^{-x}$.

(04 Marks)

c. Solve the equation $(D^3 - 1) y = 3 \cos 2x$.

(06 Marks)

d. Solve by the method of undetermined coefficients $(D^2 - 4D + 4) v = e^x$.

(06 Marks)

6 Select the correct answer in each of the following:

The Wronskian of differential equation $f(D)y = \phi(x)$ is

A) $W = y_1 y_2^1 - y_2 y_1^1$

B) $W = y_2 y_1$

C) $W = v_2^2$

D) $y_1 + y_2$

To transform $(ax + b)^2 y'' + (ax + b) y' + y = \phi(x)$ into a linear differential equation with constant coefficients put t =

A) Log (ax + b) B) e^x C) x D) e^{2x} The solution of the differential equation y'' + 4y' + 4y = 0, satisfying the conditions y(0) = 1 and y(1) = 1 is A) $(c_1 + c_2x)^{-2x}$ B) Cos x + Sin x C) 2 Sinx $c_1e^x + c_2e^{-x}$ is the general solution of

D) Sinx Cosx

 $c_1e^x + c_2e^x$ is the general solution of A) $(D^2 + 1) y = 0$ B) $(D^2 - 1) y = 0$ C) (D + 1) y = 0 D) None of these

b. Solve $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = (1+x)^2$.

(04 Marks)

(04 Marks)

Solve by the method of variation of parameters $(D^2 + a^2) y = \sec ax$.

(06 Marks)

d. Solve the initial value problem $\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 0$ given that x(0) = 0, $\frac{dx}{dt}(0) = 15$.

(06 Marks)

7	a.	Select the correct answer in each of the following: i) Laplace transform of cosat is				
		•••	A) $\frac{s}{s^2 + a^2}$	5 – a	$C) \frac{1}{s^2 + a^2}$	D) $\frac{1}{s-a}$
		ii)	Laplace transform of A) $\frac{a}{s^2 + a^2}$		C) $\frac{s}{s^2 + a^2}$	D) $\frac{1}{2}$
		iii)	s ² + a ² Laplace transform of	. 3 u	$s^2 + a^2$	$s^2 + a^2$
		111)	A) $\bar{f}(s+a)$	_	C) $\bar{f}(s)$	D) None of these
		iv)	Laplace transform of	•	, , ,	•
			A) $\frac{120}{s^6}$	3	C) $\frac{125}{s^6}$	D) $\frac{122}{s^4}$. (04 Marks)
	b. Find the Laplace transform of e ^{3t} Sin5t Sin3t.					(04 Marks)
	c.	c. Given $f(t) = \begin{cases} E, & 0 < t < a/2 \\ -E, & a/2 < t < a \end{cases}$, where $f(t + a) = f(t)$, show that $L\{f(t)\} = \frac{E}{S}$				
	d.	Find	the Laplace transform	of the function [e ^{t-1} +	Sin (t – 1)] u (t – 1).	(06 Marks) . (06 Marks)
8	8 a. Select the correct answer in each of the following:					
		i) Inverse Laplace transform of $\frac{1}{s+1}$ is A) e^{at} B) e^{-t} C) e^{2t} D) t				
		ŕ	A) e ^{at}	s+1 R) e ^{-t}	C) e^{2t}	D) t
		***			7	<i>D</i>) (
		ii) Inverse Laplace transform of $\frac{s+5}{s^2-6s+13}$ is				
			A) e^{3t} (Cos2t + 4 Si C) e^{t}	n2t)	B) Cos 2tD) None of these	
		iii) Inverse Laplace transform of $\frac{1}{s^4}$ is				
			۷.	B) $t^{3}/3!$	C) $t^4/4!$	D) $t^{2}/4!$
		iv)	$L^{-1}\left(\frac{1}{s^2+5}\right) =$			
			A) $\frac{1}{\sqrt{5}} \operatorname{Sin}(\sqrt{5}t)$	B) $\frac{1}{\sqrt{6}}$ Cos $\sqrt{6}$ t	C) $\frac{1}{\sqrt{7}}\sin\sqrt{6}t$	D) None of these.
				2 - 2		(04 Marks)
	b.			ansform of $\frac{s^2 - 2s^2 + 1}{s^5}$		(04 Marks)
	c.		Find the inverse Laplace transform of $\frac{1}{s(s+1)(s+2)(s+3)}$.			
	d.	Solv	e by using Laplace tran	nsforms $\frac{d^2y}{dt^2} + k^2y = 0$	given that $y(0) = 2$	y'(0) = 0. (06 Marks)